ELEMENTOS DE PROBABILIDAD Y ESTADÍSTICA

INTRODUCCIÓN:

 El nombre de Estadística alude al enorme interés de esta rama matemática para los asuntos del Estado y su introducción en el mundo científico se debe a la importancia indiscutible para el desarrollo de las ciencias sociales y humanas.

La Estadística trata, en primer lugar, de acumular la masa de datos numéricos provenientes de la observación de multitud de fenómenos, procesándolos de forma razonable. Mediante la teoría de la probabilidad analiza y explora la estructura matemática subyacente al fenómeno del que estos datos provienen y, mediante el conocimiento de tal estructura, trata de sacar conclusiones y predicciones que ayuden al mejor aprovechamiento del fenómeno para los fines que de él se pueden pretender.

La tarea de describir y procesar de modo adecuado la masa de datos, provenientes de las observaciones y experimentos, es el objeto de la estadística descriptiva. El análisis de estos datos se realiza mediante la teoría de la probabilidad. Finalmente, el arte de obtener con confianza conclusiones sobre el modo de proceder respecto del fenómeno que se estudia es el objeto de las diversas técnicas existentes de inferencia estadística.

En esta página trataremos sólo de la Estadística descriptiva. Si necesitas ampliar el tema o más temas de Estadística y Probabilidad visita el siguiente enlace     ESTADÍSTICA

 

 

I n t r o d u c c i ó n   a  l a    E s t a d í s t i c a

 

 INTRODUCCIÓN:

La Estadística descriptiva es una parte de la Estadística cuyo objetivo es examinar a todos los individuos de un conjunto para luego describir e interpretar numéricamente la información obtenida.

Sus métodos están basados en la observación y el recuento. Se pretende, una vez realizados, poder simplificar los datos observados para obtener de ellos una información lo más completa posible del total de la población.

En estadística descriptiva el material de trabajo lo constituyen los datos, que son los resultados de las observaciones. Una vez obtenidos los datos hay que ordenarlos y clasificarlos mediante algún criterio racional de modo que sea posible una visión crítica de los mismos.

En general, este tratamiento previo de los datos será de alguno de estos tres tipos:

1) Construcción de tablas para ordenar y clasificar los datos.

2) Realización de gráficos para representar físicamente los datos.

3) Obtención de estadísticos o funciones de los valores de los datos, que pretenden poner de manifiesto ciertas propiedades de los mismos.

1. Conceptos básicos.

Cualquier elemento o ente que sea portador de información sobre alguna propiedad en la cual se está interesado se denomina individuo.

El conjunto de todos los individuos en los que se desea estudiar alguna propiedad o característica se llama población.

Todo subconjunto finito de la población sobre el que se realice el estudio de la propiedad deseada, es una muestra.  Al número de individuos de este subconjunto se le llama tamaño de la muestra.

Ejemplo 1. Para estudiar la evolución del cáncer de mama en la población femenina de un país, se puede considerar que individuo es cada una de las mujeres residentes en el mismo, población es el conjunto de todas ellas y una muestra se obtiene al observar el 1% del censo.

Con mucha frecuencia se consideran como población y muestra, no los conjuntos de individuos, sino las medidas de la característica asociadas a esos individuos.

Ejemplo 2. En un banco de sangre se experimenta un nuevo sistema para aumentar el período de conservación de la misma. En este caso cada bolsa de sangre es un individuo; la población es el conjunto de todas las bolsas del banco y una muestra se obtiene tomando un cierto número de bolsas para su análisis.

Obsérvese que el concepto de individuo no va asociado necesariamente con el de persona, sino que puede ser algo de naturaleza más abstracta.

2. Clasificación de los datos.

Conviene también observar que todos los datos no son del mismo tipo. Cuando los datos, es decir los resultados de las observaciones, no son magnitudes medibles numéricamente, sino cualidades o atributos, se dice que se trata de datos cualitativos, mientras que en caso contrario se habla de datos cuantitativos.

Ejemplo 3. Se observan las causas de muerte de 16 individuos de una cierta población, agrupándolas en las cuatro siguientes: enfermedades cardiovasculares (EC), cáncer UN SOLO, accidentes (A) y otras causas (O), habiéndose obtenido los siguientes datos:

EC, EC, A, C, O, A, EC, A, O, C,EC, C, O, C y EC.

Como los resultados no son medibles numéricamente, los datos son cualitativos.

Ejemplo 4. Las notas obtenidas en Matemáticas en una clase de COU han sido:

2, 7, 4, 6, 5, 0, 3, 9,  8, 4, 3, 6, 5 y  8.5.

Se trata de datos cuantitativos.

A su vez los datos cuantitativos se denominan continuos si los resultados pueden tomar cualquier valor real dentro de un cierto intervalo, o discretos, si sólo pueden tomar ciertos valores particulares.

Ejemplo 5. Del estudio de la estatura de un cierto núcleo de población se han obtenido los siguientes datos:

1.62, 1.78, 1.75, 1.58, 1.83, 1.68  y  1.81metros.

Son datos continuos, pues los individuos de una población pueden tener como estatura cualquier número real en un cierto intervalo.

Ejemplo 6. Del alumbramiento de un conjunto de ratas se ha observado el número de crías, obteniéndose los siguientes valores numéricos:

5, 3, 1, 5, 3, 6, 4, 2, 5, 6, 3, 6, 5, 2, 6, 7 y 3.

Por no ser posibles números no naturales, es evidente que se trata de datos cuantitativos discretos.

Es decir los datos se clasifican:

 

 

Los datos pueden provenir del estudio de un solo carácter o propiedad (caso unidimensional) o de varios simultáneamente (caso multidimensional). En este primer tema estudiaremos sólo los datos unidimensionales.

3. Características de una muestra representativa

La observación de un determinado carácter en una población puede realizarse de varias formas:

a) Observación exhaustiva: si se considera a la totalidad de los individuos.

b) Observación parcial: si se utiliza una muestra.

En los casos en que el tamaño de la población es muy grande el estudio estadístico se realiza sobre muestras.

Para seleccionar una muestra han de respetarse dos tipos de criterios:

- De carácter cuantitativo, es decir ¿cuál es le tamaño adecuado de una muestra?

- De carácter cualitativo, o, lo que es lo mismo, ¿cómo debe elegirse la muestra?

Hay múltiples formas de realizar un muestreo estadístico, entre otras:

a) Muestreo aleatorio simple; se basa en suponer que todos los elementos de la población tienen asignada la misma probabilidad de ser elegidos. Si se numeran los elementos de la población, una tabla de números aleatorios puede facilitar la tarea de selección.

b) Muestreo por estratos: Consiste en clasificar previamente a la población en clases o estratos y de ellos obtener muestras aleatorias.

c) Muestreo por conglomerados: es en esencia el mismo sistema que el anterior con la diferencia de que ahora la población se divide en clases con determinados caracteres comunes entre ellas (conglomerados).

Nota. De  la obtención de muestras de las que se pueden sacar conclusiones válidas para la totalidad de la población se ocupa la Teoría de muestras.

4. Variables estadísticas. Frecuencias.

Los caracteres estadísticos de una población son las propiedades o cualidades de los individuos que nos interesa estudiar. Un carácter estadístico divide a la población en clases. A cada una de estas clases se la denomina modalidad.

Cuando el carácter es cuantitativo sus diversas modalidades son medibles, es decir se les puede asignar un número.

Definición 1. Se llama variable estadística a la aplicación que a cada modalidad le hace corresponder ese número, es decir su medida.

Ejemplo 7. En el ejemplo 6 la variable estadística toma los valores: 1, 2, 3, 4, 5, 6 y 7.

La variable estadística será discreta cuando sólo pueda tomar un nº finito de valores y continua cuando pueda tomar todos los valores de un cierto intervalo.

Ejemplo 8. La variable estadística del ejemplo 5 es continua y discreta la del ejemplo 6.

Definición 2. Se llama frecuencia absoluta al número de individuos que toman un determinado valor de una variable estadística (o una modalidad de un atributo).

Para variables estadísticas (es decir, datos cuantitativos) puede definir:

Definición 3. Se llama frecuencia absoluta acumulada de un valor a la suma de las frecuencias absolutas de todos los valores menores o iguales que él.

Ejemplo 9. En el ejemplo 6 la frecuencia absoluta del 5 (tener 5 crías) es 4. La frecuencia absoluta acumulada del 2 es 3.

Definición 4. Se llama frecuencia relativa a la razón entre la frecuencia absoluta y el número total de datos o tamaño de la población.

Definición 5. Se llama frecuencia relativa acumulada de un valor de una variable estadística a la suma de las frecuencias relativas de todos los valores menores o iguales que él.

Ejemplo 10. La frecuencia relativa del 5 es  4/17 y la relativa acumulada del 2 es 3/17.

5. Representación de datos: Tablas.

Las dos formas más comunes de representar los datos son las tablas y los gráficos.

Tablas estadísticas

Las tablas estadísticas aparecen por todas partes y consisten en masas estructuradas de datos.

Están confeccionadas de tal modo que resultan muy fáciles de leer y de interpretar. Hay que utilizar, fundamentalmente, el sentido común.

Para la construcción de tablas de datos cuantitativos pueden tratarse éstos individualmente o agrupándolos en clases

1) Tratamiento individual

Para variable discreta, o que siendo continua tengamos pocos datos.

Si tenemos una muestra de tamaño N, la tabla se estructura así:

Variable

  Frecuencias

    absolutas

Frecuencias     relativas

estadística : xi

puntuales

acumuladas

puntuales

acumuladas

x1

x2

 

......

xk

n1

n2

 

.....

nk

N1= n1

N2= n1 + n2

 

…...

 Nk= n1 + n2 +..+ nk

f1= n1/N

f2=n2/N

 

…...

fk= nk/N

F1= N1/N

F2=N2/N

 

…...

Fk= Nk/N

                                =N                                

Ejemplo 11. Las notas de los 20 alumnos de una clase son:

                   4, 3, 3, 5, 6, 7, 9, 0, 5, 4, 9, 10, 2, 7, 2, 2, 5, 6, 5, 0

Vamos a calcular una tabla:

Variable

  Frecuencias

    absolutas

Frecuencias     relativas

estadística : xi

puntuales ni

acumuladas Ni

puntuales fi

acumuladas Fi

0

2

3

4

5

7

9

2

3

2

2

5

3

3

2

5

7

9

14

17

20

1/10

3/20

1/10

1/10

1/4

3/20

3/20

1/10

5/20=1/4

7/20

9/20

14/20=7/10

17/20

20/20=1

Ejercicio 1. En un Instituto hay matriculados 2200 alumnos que se distribuyen por edades en la forma siguiente: 215 de 14 años, 437 de 15, 421 de 16, 396 de 17, 512 de 18, 124 de 19 y 95 de 20. Formar la tabla de distribución y de frecuencias, que incluya frecuencias acumuladas.

2) Tratamiento por clases

Cuando en la población o muestra que estudiamos existen muchos valores diferentes, es conveniente, aún a costa de perder algo de información, dividir el intervalo de variación en una serie de subintervalos que cubran el total; a cada uno de ellos se le llama una clase, a sus extremos, extremos de clase, al punto medio de cada clase, marca de clase y a la diferencia entre sus extremos, amplitud de la clase.

En estos casos la tabla adopta una estructura como la del cuadro siguiente:

Clases

(intervalos)

Marcas de clase (mi)

   Frecuencias    absolutas......

  de clase     ½    acumuladas

   Frecuencias     relativas...

de clase    ½  acumuladas

Mientras que en el caso del tratamiento individual la tabla quedaba perfectamente determinada por los posibles valores de los datos, en el de clases está claro que no sucede así, pues hay libertad para elegir el número de clase y los extremos de las mismas.

Los intervalos, en general,  deben tener la misma amplitud.

Para decidir el nº de clases que se deben tomar conviene tener en cuenta que si éste es excesivo con respecto al número de datos, pueden aparecer irregularidades accidentales provenientes de pocas observaciones en algunas clases. Sin embargo, si se toma el número de clases demasiado reducido se producirá una pérdida importante de información.

Un criterio orientativo para decidir cuántas clases se deben tomar lo proporciona la siguiente fórmula empírica debida a Sturges:  k = 1 + 3.3 log n

Ejemplo 12. Se ha pasado un test de 79 preguntas a 600 personas. El número de respuestas correctas se refleja en la siguiente tabla:

intervalos

mi

f.absoluta. puntual

f.absoluta acumulada

f.relativa. puntual

f.relativa. acumulado

[0, 10)

[10, 20)

[20. 30)

[30, 40)

[40, 50)

[50, 60)

[60, 70)

[70, 80)

5

15

25

35

45

55

65

75

 

40

60

75

90

105

85

80

65

600

40

100

175

265

370

455

535

600

 

1/15

1/10

1/8

3/20

7/40

17/120

2/15

13/120

1

1/15

1/6

7/24

53/120

37/60

91/120

107/120

1

Ejemplo 13. En una Caja de Reclutamiento se toma una muestra de tamaño 30 de los pesos de los mozos correspondientes a un cierto reemplazo, obteniéndose los siguientes datos medidos en kg:

71.9, 63.9, 62.3,  72.5, 78.0, 70.7, 71.4, 60.5, 60.9, 68.2, 88.5, 76.1, 82.1, 63.7, 79.8, 67.5, 50.1, 69.5, 66.1, 47.3, 72.1, 59.8, 93.7, 80.7, 61.2, 64.3, 53.7, 74.7, 96.3, 73.2.

Construir una tabla de frecuencias agrupando los datos en clases de la misma amplitud.

Solución

Si bien no es estrictamente necesario, en general, es conveniente ordenar los datos de menor a mayor. A continuación se presenta la misma muestra ordenada:

47.3, 50.1, 53.7, 59.8, 60.5, 60.9, 61.2, 62.3, 63.7, 63.9, 64.3, 66.1, 67.5, 68.2, 69.5, 70.7, 71.4, 71.9, 72.1, 72.5, 73.2, 74.7, 76.1, 78.0, 79.8, 80.7, 82.1, 88.5, 93.7, 96.3.

Como los valores extremos son 47.3 y  96.3 y el número de clases aconsejado para estos datos es 6 (aplicando la fórmula de Sturges),  tomaremos 6 intervalos de amplitud 10, la tabla queda estructurada de la siguiente manera:

clases

Marcas de clase

frecuencias absolutas

de clase     ½acumuladas

Frecuencias relativas

de clase   ½acumuladas

45 -55

55 -65

65 -75

75 -85

85 -95

95 -105

50

60

70

80

90

100

3

8

11

5

2

1

3

11

22

27

29

30

0.1

0.266

0.366

0.166

0.066

0.033

0.1

0.366

0.733

0.900

0.966

1

                                             30                               0.997»1

Intervalos no solapados.

Si los datos recogidos están ya agrupados en intervalos no solapados, como por ejemplo:

Intervalo

ni

120-139

140-149

150-159

160-169

32

37

23

19

Es conveniente tomar unos intervalos que contengan a éstos, pero sin modificar las frecuencias. Esto es:

Intervalo

ni

[119,5-139,5)

[139,5-149,5)

[149,5-159,5)

[159,5-169,5)

32

37

23

19

Estos nuevos valores se llaman límites reales de la clase.

Observación. Las tablas nos dan una visión, de la característica que se está estudiando, mucho más clara que la que da la muestra,  tal cómo se presenta inicialmente.

Ejercicio 2. El número de personas que viven en cada uno de los portales de una gran barriada es:

63, 58, 70, 47, 120, 76, 80, 59, 80, 70, 63, 77, 104, 97, 78, 90, 112, 88, 67, 58, 87, 94, 100, 74, 55, 80, 75, 49, 98, 67, 84, 73, 95, 121, 58, 71, 66, 87, 76, 56, 77, 82, 93, 102, 56, 46, 78, 67, 65, 95, 69, 90, 58, 76, 54, 76, 98, 49, 87, 69, 80, 64, 65, 56, 69, 68, 99, 106.

Construye una tabla de frecuencias[1].

Series cronológicas

Se Llaman series cronológicas a unas tablas estadísticas que recogen observaciones hechas a lo largo del tiempo, normalmente a intervalos iguales. Es por tanto una serie estadística en que la variable independiente es el tiempo.

Ejemplo 14.  El número de médicos colegiados en España en el período de 1984 – 1992:

1984

1985

1986

1987

1988

1989

1990

1991

1992

99730

107503

119890

123543

129897

138967

147978

152943

156748

 

Ejercicio 3. La producción editorial española de libros de sociología y Estadística, en los años que se indica es:

Años

1991

1992

1993

1994

1995

1996

1997

345

487

589

376

479

652

741

Hacer una tabla de frecuencias absolutas y relativas puntuales. Expresar la relativa en porcentajes.

6. Representación de datos: Gráficos.

Los gráficos no son más que traducciones a un dibujo del contenido de las tablas. La finalidad de los gráficos estadísticos es que la información esté al alcance de personas no expertas, que entre por los ojos. Los hay de muy diversos tipos pero todos son muy fáciles de interpretar.

Variables cualitativas


Los más usados son los diagramas de rectángulos y los de sectores.


                           

Ejercicio 4.  El censo, en miles de cabezas, del ganado en el territorio español, en  1994 fue:

Ganado

Número de cabezas

Bovino

Ovino

Caprino

Porcino

Caballar

Mular

Asnar

5300

18047

2601

12308

264

153

164

Dibujar un diagrama de sectores y otro de rectángulos.

· Variables cuantitativas.

Distinguiremos entre variable discreta o continua.

Tratamiento individual

Para el tratamiento individual los medios de representación más utilizados son el gráfico (o diagrama) de barras, el polígono de frecuencias y los gráficos acumulativos.

Diagrama de barras: Se asocia a una tabla de frecuencias ya sea absoluta o relativa.

Sobre un eje horizontal se representan los valores discretos que toman los datos y sobre cada uno de ellos se coloca una barra vertical (o un rectángulo) de longitud (altura) proporcional a la frecuencia.

Ejemplo 15. Vamos a hacer un diagrama de barras de frecuencias absolutas para el ejemplo 6.

 

En ocasiones se superponen dos o más diagramas para comparar datos:

Ejemplo 16:  Producción y venta de automóviles en España:

 

Polígono de frecuencias: Como el anterior se asocia a una tabla de frecuencias.

Se representan en un sistema cartesiano los puntos aislados y luego se unen por medio de segmentos (poligonal). Se usa sobre todo para frecuencias acumuladas (figura 1). También para series cronológicas.

Ejercicio 5. La esperanza de vida al nacimiento ha evolucionado desde 1900, como se refleja en la tabla siguiente:

Años

1900

1910

1920

1930

1940

1950

1960

1970

1980

Varones

33,9

40,9

40,3

48,3

47,1

59,8

67,4

69,6

72,6

Mujeres

35,7

42,6

42,1

51,6

53,2

64,3

72,2

75,1

78,6

Dibujar los polígonos de frecuencias superpuestos para poder compararlos.

Gráficos acumulativos: Se construye a partir del mismo eje horizontal del gráfico de barras, llevando sobre cada valor discreto una vertical de longitud proporcional a la frecuencia acumulada, absoluta o relativa, de dicho valor. Se suele completar el gráfico dándole forma de una escalera de peldaños horizontales.

Ejemplo 16.  Gráfico de barras acumulativo

Tratamiento por clases

 Cuando las variables son continuas, o discretas  agrupadas, los gráficos que más se utilizan son: el histograma de frecuencias y los polígonos de frecuencias (absolutas o relativas)

 

Histogramas de frecuencias. Sobre el eje de abscisas se marcan los extremos de las sucesivas clases y con base en cada clase se dibuja un rectángulo de altura proporcional a la frecuencia (absoluta o relativa) observada en dicha clase[2].


Cuadro de texto: Figura 2

 

Ejercicio 6. En la siguiente tabla se presenta la distribución por edades del número de muertes registradas en España (datos hasta el 30-9-94) a causa del SIDA.

 

Edad en años

<3

3-9

10-12

13-14

15-19

20-24

25-29

30-34

35-39

40-49

50-59

60-69

Nº de muertes

411

171

35

31

247

2888

8576

7640

3292

2552

909

544

a) Construye la tabla de frecuencias relativas agrupando los datos en las siguientes categorías de edad: 0-9, 10-19, 20-29, 30-39, 40-49, 50-59 y 60-69 años.

b) Representa gráficamente la información obtenida en el apartado a) mediante un histograma,

 

Polígono de frecuencias. Se asocia a cada clase un punto del plano cartesiano, de abscisa el valor de la marca de clase y de ordenada la frecuencia observada en dicha clase. Uniendo los puntos resulta una línea quebrada que se denomina polígono de frecuencias (figura 3)

Polígono de frecuencias acumuladas.

Partiendo del valor cero en el extremo izquierdo de la primera clase, el polígono acumulado va tomando en los sucesivos extremos derechos de las clases un valor igual a la frecuencia acumulada. Uniendo los puntos así obtenidos resulta el polígono acumulativo de frecuencias (figura 4).

 

 


figura 4

 

Ejercicio 7. Los jugadores de un determinado equipo de baloncesto se clasifican, por altura, según la tabla siguiente:

 

Altura

1,70-175

1,75-1,80

1,80-185

185-190

1,90-1,95

1,95-2,00

Nº de jugadores

1

3

4

8

5

2

 

Dibujar el polígono de frecuencias absolutas acumulativo.

 

7. Parámetros estadísticos.

Las tablas estadísticas son una forma organizada de dar toda la información, todos los datos de que disponemos.

Con las gráficas estadísticas se pierde algo de información, pero el mensaje “entra por los ojos”, que es lo que se pretende.

En cualquiera de los dos casos, la cantidad de datos que se dan es excesiva para que sea operativo, por ejemplo para la comparación con otras distribuciones.

Por ello se definen los parámetros estadísticos, que nos van a servir para resumir en números aspectos relevantes de la distribución, que puedan dar una idea de la misma o permitir compararlas con otras.

Clases de parámetros estadísticos

¨ Medidas de centralización: media (ya conocida), moda (el valor que se presenta con más frecuencia) y mediana (el valor del individuo que ocuparía el lugar central sí se colocaran ordenados de menor a mayor). Tienen como misión representar con un número a la serie estadística bajo el punto de vista de su posición.

¨ Medidas de dispersión: rango o recorrido, desviación media, varianza, desviación típica, coeficientes de Pearson... Sirven para medir el grado de alejamiento de los datos respecto de una medida central. 

¨ Medidas de posición: cuartiles, deciles, centiles o percentiles. Señalan la situación de algunos valores importantes de la distribución.

En la ordenación que se hizo para la mediana se llaman cuartiles primero, segundo y tercero a los que superan exactamente al  25%, 50% y 75% de los valores. El segundo cuartil es la mediana. Para su obtención se usan los diagramas de cajas

Ejemplo 17. Representa mediante un diagrama de cajas las siguientes calificaciones de 20 alumnos.

0, 2, 3, ,3, 3, 4, 4, 4, 5, 5, 5,, 5, 5, 5, 7, 7, 7, 8, 8 9

         Como es múltiplo de 4, 20:4 = 5, Q1. Me y Q3. , serán los valores que hay entre el 5º y 6º , 10º y 11º, 15º y 16º, es decir:

Q1= 3,5,        Me =5 y        Q3 =7

 

 

Ejercicio 8. Los pesos de un grupo de alumnos de 2º Bach son:

63, 58, 70, 57, 56, 76, 80, 59, 80, 70, 63, 77, 84, 77, 78, 90, 72, 88, 67, 58, 87, 94, 80, 74, 55, 80, 75,

59, 81, 67, 84, 73, 65, 71, 58, 71, 66, 87, 76, 56, 77, 82, 73, 67, 56, 46, 78, 67, 65, 65, 69, 80, 58, 76, 54, 76,

78, 49, 87, 69, 80, 64, 65, 56, 69, 68, 69, 64.

Representa la distribución mediante un diagrama de caja.

 

¨ Medidas de asimetría, para señalar si la distribución está sesgada hacia uno u otro lado.

¨ Medidas de apuntamiento o curtosis que indican si la distribución es más o menos puntiaguda.

Para el cálculo práctico de muchos parámetros estadísticos se utilizan tablas que facilitan dichos cálculos (Las fórmulas para hallar los parámetros estadísticos más usuales se dan después)

TABLA 1

 

 

ni

ni

 

.....

 

TABLA 2

 

 

ni

ni

 

.....

Ejemplo 17. Construir la tabla 1 con los datos del ejemplo 11

xi

ni

ni

ni

0

2

3

4

5

7

9

2

3

2

2

5

3

3

0

6

6

8

25

21

27

4,65

2,65

1,65

0,65

0,35

2,35

4,35

9,30

7,95

3,30

1,30

1,75

7,05

13,05

21,62

7,02

2,72

0,42

0,12

5,52

18,92

43,24

21,06

5,44

0,84

0,60

16,56

56,76

                              20            93                           la media es 93/20=4,65

Ejemplo 18. Construir la tabla 2 con los datos del ejemplo 13.

Clases

Marcas de clase xi

frecuencia

ni

ni

45 -55

55 -65

65 -75

75 -85

85 -95

95 -105

50

60

70

80

90

100

3

8

11

5

2

1

150

480

770

400

180

100

2500

3600

4900

6400

8100

10000

7500

28800

53900

32000

16200

10000

 

Ejemplo 19[3]. A) Hallar la media y la varianza de la variable cuyos valores y frecuencias absolutas vienen dadas en la tabla adjunta

Valores de la variable

3

5

4

2

0

8

7

frecuencias

1

3

4

1

3

1

2

b) Representar gráficamente los datos en un diagrama de barras.

 Solución a)

0

2

3

4

5

7

8

3

1

1

4

3

2

1

0

2

3

16

15

14

8

0

4

9

16

25

49

64

0

4

9

64

75

98

64

 

15

58

 

314

 

Se tiene : (Ver fórmulas)         = 5,96

b)

 

MEDIA ARITMÉTICA  

Es el valor

Cuadro de texto:

Si se trabaja con datos agrupados para la fórmula an-terior, [1],  se toma xi  igual a las marcas de clase.

Propiedades

1. Si sumamos una constante a todos los valores la media aumenta en el mismo número.[4] Es decir si  xi´= xi + A Þ

2. Análogamente, si ,entonces

3. Si  zi = xi + yi Þ

4. La suma algebraica de las desviaciones respecto de la media es cero, es decir :

5. La suma de las desviaciones cuadráticas,, es mínima si a=.

Un inconveniente de la media es que los datos con valores extremos pueden influir  excesivamente en su evaluación.

 

MODA[5] Mo

Es el valor de la variable de mayor frecuencia. 

La distribución puede tener varias modas

Para el caso continuo se habla del intervalo modal  (el de mayor frecuencia ni).

Cálculo de la moda8

Para calcular la moda, para datos agrupados,  se puede usar la fórmula

                                                             

   [2] (c es la ampitud de la clase modal)

 


Mediana Me                                                                                                                                                                  Li  Mo

Es el valor que ocupa el lugar central

Cálculo de la mediana

Si la distribución tiene un nº impar de datos siempre existe una única mediana y es precisamente el valor central en la relación ordenada de menor a mayor. Si el nº de datos es par  se toma como mediana  la media de los valores centrales

Para hallar la mediana, cuando los datos estén agrupados, se puede usar el polígono de frecuencias acumuladas (Figura 1)y buscar la abscisa que corresponde a y = N/2 (por interpolación lineal).

Cuadro de texto:

                                                                                                                                           Li Me

La fórmula anterior [3],  nos da dicho  valor. En ella:

Ni-1  es la frecuencia absoluta acumulada hasta llegar a la clase mediana, ni la frecuencia absoluta de la clase mediana, Li el límite inferior de la clase mediana y c la amplitud de dicha clase.

Cuantiles

Se llama cuantil de orden a de una distribución al valor de la variable que deja por debajo de él al a % de los elementos de la población.

Los que más se usan son los cuartiles y los centiles o percentiles.

La mediana coincide con el cuartil segundo Q2.

Los cuartiles y centiles se calculan de forma análoga a la me diana (usando el polígono de frecuencias acumulativo, y por interpolación lineal, que nos da la fórmula)

 

RANGO

También llamado recorrido, es la diferencia entre el mayor y el menor de los datos.

Cálculo del rango.

Para el caso continuo, se toma la diferencia máxima posible entre los límites de intervalos

DESVIACIÓN MEDIA

Es la media de las desvia-ciones respecto de la media.

Cálculo de la desviación media9

Como la suma de las desviaciones respecto de la media da cero lo que se toma son las diferencias en valor absoluto.

La fómula es:

VARIANZA 

Se  define como la media de las desviaciones cuadráticas respecto de la media.

DESVIACIÓN TÍPICA

Se define como la ráiz cua-drada de la varianza:

 

.

Propiedades

1. Si se suma una constante a todos los valores de la variable la desviación típica no varía.

2. Si se multiplican todos los valores de la variable por el mismo número, la desviación típica queda multiplicada por el mismo número

3. Se verifica que

fórmula que simplifica su cálculo.

 

COEFICIENTE DE VARIACIÓN  DE PEARSON

Es la razón entre la desviación típica y la media.

No debe usarse para valores muy próximos a cero de la media.

Se utiliza para eliminar la influencia de las unidades en el valor de la dispersión y mide la dispersión relativa de la muestra..

Por definición  se calcula mediante la fórmula:      

 

TIPIFICACIÓN

Para comparar dos series datos estadísticos se normaliza (o tipifica) la variable

 

Si X es una variable estadística la  variable normalizada es:

,

Se dice que se ha tipificado la variable.

 Coeficientes  de asimetría y curtosis

Sirven para medir la “sime-tría” y el “apuntamiento” de las series estadídticas

Si el coeficiente de asimetría es:>0 la curva es sesgada a la derecha, y sí es<0, sesgada a la iizquierda

 

Cálculo de los coeficientes de asimetría y apuntamiento.

El coeficiente directo de asimetría se define así:

:

El de apuntamiento :

 

Observación. Cuando se trabaja con datos agrupados se toma  xi igual a la marca de clase.

 

EJERCICIOS resueltos

1. a) Completar los datos que faltan en la siguiente tabla estadística, donde f, F y fr representan, respectivamente, la frecuencia absoluta, acumulada y relativa:

x

f

F

fr

1

4

 

0,08

2

4

 

 

3

 

16

0,16

4

7

 

0,14

5

5

28

 

6

 

38

 

7

7

45

 

8

 

 

 

b) Calcula la media, mediana y moda de esta distribución

Solución

a) La frecuencia relativa de 1 es    0,08 = , de donde N = 50, lo que nos permite completar la tabla.

X

f

F

fr

1

4

4

0,08

2

4

8

0,08

3

8

16

0,16

4

7

23

0,14

5

5

28

0,10

6

10

38

0,20

7

7

45

0,14

8

5

50

0,10

b) la media x = 4,76; la mediana es 5  y la moda es 6.

2. Observados los alquileres de un conjunto de despachos se ha obtenido:

 

Alquileres en miles de pesetas

ni

[0,15)

17

[15,30)

130

[30,45)

180

[45,60)

30

[60,75)

10

[75,90)

5

Calcula la moda y la mediana.

Solución:

Como los datos son agrupados tenemos: para la moda la fórmula:

m0 = = 30 +

 

Para la mediana usamos el polígono acumulativo de frecuencias

 

xi

ni

Ni

[0,15)

17

17

[15,30)

130

147

[30,45)

180

327

[45,60)

30

357

[60,75)

10

367

[75,90)

5

372

 

Por interpolación lineal se llega a:

186-147=, de donde:

 

 me =33,25. Comprobar aplicando la fórmula [2]

3. Una empresa petrolera ha tenido unos beneficios anuales de 2000 millones de pesetas. En dicho sector la media es de 1500 millones y la desviación típica de 450 millones. Un comercio tuvo un beneficio de 8 millones. La media del sector es de 6 millones y la desviación típica de 2,5 millones. ¿Cuál tuvo mejor beneficio respecto a su sector?.

Solución 

Tipificamos las variables[6]

Para la empresa del petróleo:   ; para el comercio:

 

Luego tuvo mayor beneficio respecto de su sector el comercio, ya que se desvió por encima de la media en 1,3, mientras que la petrolera sólo 1,1.

4. De dos muestras la primera con media 30 y desviación típica 4 y la segunda de media 50 y desviación típica 5, ¿cuál es la que aparece  más dispersa?

Solución

Calculamos el coeficiente de variación de Pearson[7], Cp =  de ambas:

4/30 = 0,13 y 5/50 = 0,1, luego es más dispersa la primera.

5. Se  quiere hacer una revisión médica a los empleados de una empresa. Se han escogido 3 muestras del mismo número de empleados. De la primera muestra se han revisado 6 personas por hora, de la segunda 5 personas por hora y de la tercera 4 personas por hora. Hallar el promedio de las revisiones.

Solución

Se trata del cociente entre las magnitudes: número de personas y números de horas. Al calcular los cocientes se ha mantenido fijo el número de personas. Por tanto para hallar el promedio se ha de calcular la media armónica,  cuya definición es:        .  mh  = 3/(1/6+1/5+1/4) =4,86

 

 

6. Un profesor hace 3 exámenes considerando que el 2º es más importante que el 1º y el 3º más importante que el 2º. Para calcular la nota del alumno que ¿ promedio te parece el más indicado?

Solución

La media ponderada: que se define así:   .

 

 

7. Se considera una distribución de datos agrupados en intervalos cuyo polígono de frecuencias acumuladas es el de la figura.


                                                      20   40   60  80  100

Calcula:

a) Tabla de distribución de frecuencias acumuladas.

b) la media.

Solución

a)

xi

ni

Ni

20

40

60

80

100

3

6

5

0

6

3

9

14

14

20

b)

 

8. En la fabricación de un cierto tipo de clavos, aparecen un cierto nº de ellos defectuosos. Se han estudiado 200 lotes de 500 clavos cada uno obteniendo:

 

Clavos defectuosos

1

2

3

4

5

6

7

8

nº de lotes

5

15

38

42

49

32

17

2

 

Calcular la mediana y el percentil 20.

Solución:

Se construye la tabla estadística con las columnas de las frecuencias absolutas acumuladas, siendo ésta

:

Nº de piezas

Nº de lotes (fa)

uar. Absoluta acumulada.


1

2

3

4

5

6

7

8

5

15

38

42

49

32

17

  2

5

20

58

100

149

181

198

200

                    200

Como es par la distribución  la mediana es la media de los valores centrales


Los valores centrales son  4 y 5, por tanto la mediana es 4,5.

El percentil 20

 

comprendido entre las frecuencias 20 y 58 luego       P20 = 3 

 

9. En el estudio de un cierto fenómeno se obtiene la siguiente tabla:

xi

7

10

12

16

19

20

21

ni

6

7

16

17

22

19

17

Calcula los uarteles Q1  y Q3 correspondiente..

Solución

 

xi

ni

Ni

7

10

12

16

19

20

21

6

7

16

17

22

19

17

6

13

29

46

68

87

104

 

Se tiene: , y , que corresponde al dato 12;  3.26=78,  correspondiente al dato 20. Luego:

Q1=12,         Q3=20


10. La siguiente tabla muestra las frecuencias relativas, fi, de respuestas correctas contestadas a un test de 24 preguntas por 50 personas.


Calcular la frecuencia absoluta en cada intervalo y el histograma de frecuencias absolutas

Solución

x

0-4

5-9

10-14

15-19

20-24

fi

5

15

15

10

5


 

EJERCICIOS  propuestos

 

1  Los jugadores de un determinado equipo de baloncesto se clasifican según por  altura según la tabla siguiente:

 

altura

1,70-1,75   1,75-1,80   1,80-1,85   1,85-190   1,90-195   1,95-2,00

nº de jugadores

      1             3              4               8                 5          2

 

Queremos analizar la variable altura para ello se pide:

a) la media, la moda y la mediana.

b) la desviación típica.

c) los uarteles 1º y 3º.

2. Los pacientes que acuden a una consulta médica se distribuyen, según la edad, en una tabla:

X(edad)

[0, 10)

[10, 20)

[20,30)

[30, 40)

[40, 50)

[50,60)

N (frecuencia)

7

10

30

18

12

3

Se pide:

a) El histograma de frecuencias.

b) La media, desviación típica, mediana y moda.

c) Porcentaje de pacientes menores de 40 años que acuden a la consulta.

3. a) Calcula la media, moda, mediana y el percentil 70 de la variable del ejercicio 6.

b) Calcular el coeficiente de variación de Pearson (Cp = )

 

4. En un Instituto de bachillerato existen dos grupos de COU para la asignatura de Matemáticas II.

Las calificaciones de la 1ª evaluación para una muestra de 10 alumnos de cada grupo fueron las siguientes:

Grupo A

0

1

1

3

5

5

6

8

8

9

Grupo B

2

2

4

4

4

5

5

6

6

8

a) ¿Qué grupo obtuvo mejores resultados?

b) ¿cuál es más homogéneo?

Razone ambas respuestas

 

ESTADÍSTICA

 



[1] Aunque la variable es discreta conviene agruparlos en clases ya que hay un  número muy grande de datos.

[2] Cuando se trabaja con clases de amplitudes diferentes es más adecuado el histograma de frecuencias relativas por unidad de amplitud: En abscisas se marcan los extremos de las sucesivas clases y con base en cada una de ellas se dibuja un rectángulo de área proporcional a la frecuencia relativa.

[3] Propuesto en selectividad.

[4] Esta propiedad permite hacer traslaciones de los datos para simplificar los cálculos

[5] Veremos en los ejercicios resueltos cómo se asigna un valor.

[6] Al tipificar las variables las medimos en unidades de desviación típica, lo que permite compararlas.

[7] Mide la dispersión relativa,