Ecuaciones de 1er grado

Resuelve las ecuaciones siguientes:

1)
$$\frac{2x-3}{2} - \frac{5x-1}{3} = 1$$

Para **resolver** la ecuación seguiremos el siguiente orden.

1º Quitar denominadores

Al multiplicar los dos miembros de una ecuación por el mínimo común múltiplo de sus denominadores, se obtiene otra ecuación equivalente a la primera, pero sin denominadores.

Multiplicamos los dos miembros de la igualdad por 6, que es el m.c.m. de los denominadores.

Nos queda

$$3(2x-3)-2(5x-1)=6$$

2º Quitar paréntesis

Se efectuarán las operaciones indicadas, utilizando la propiedad distributiva.

Quitando paréntesis

$$6x-9-10x+2=6$$

3º Trasposición de términos

Se disponen todos los términos que llevan x en un miembro y los demás en el otro.

Trasponiendo términos

$$6x - 10x = 9 - 2 + 6$$

4º Reducción de términos semejantes

De este modo cada miembro de la ecuación queda con un solo término:

$$-4x = 13$$

5°. Despejar la incógnita

Se dividirá ambos miembros por el coeficiente de la incógnita (se puede hacer siempre que sea $a \neq 0$)

$$x = \frac{13}{-4} = \frac{-13}{4}$$

Observación. Dependiendo de la ecuación a resolver puede ocurrir que alguno de los pasos sea innecesario, se omite y se pasa al siguiente.

$$2)\frac{3}{2}x - 5 = 0$$

3)
$$\frac{x-3}{5} - \frac{5x+1}{3} = 1 - x$$

4)
$$\frac{2x+1}{3} = \frac{4-x}{6} - 2$$

5)
$$\frac{3x}{4} - \frac{1}{2} = \frac{x-2}{6}$$

8)
$$\frac{(2x-4)^2}{8} = 5 + \frac{x(x+1)}{2}$$

Solución.

Multiplicamos los dos miembros por 8 (es el m.c. m. de los denominadores)

$$(2x-4)^2 = 40 + 4x(x+1)$$

$$4x^2 - 16x + 16 = 40 + 4x^2 + 4x$$

$$4x^2 - 16x + 16 = 40 + 4x^2 + 4x$$

Reduciendo términos semejantes:

$$16x-4x = 40-16-20x = 24 x = \frac{24}{-20} = \frac{-6}{5} = -1,2$$

$$7) \frac{3x-2}{3} - \frac{2-x}{5} = 3 + \frac{1-2x}{2}$$

8)
$$\frac{x-1}{4} + 3x - \frac{x+7}{6} = \frac{4x+7}{9} + 11$$

Ecuaciones de segundo grado

Resuelve las siguiente ecuaciones indicando si son completas o no:

1)
$$3x^2 + 2x = 0$$

2)
$$5x^2-3=0$$

3)
$$x^2-4x+2=0$$

4)
$$2x^2 + x - 1 = 0$$

5)
$$3x^2 - \frac{5}{2} = 0 \implies 3x^2 = \frac{5}{2} \implies x^2 = \frac{5}{6} \implies x = \pm \sqrt{\frac{5}{6}}$$

$$(6) - x^2 + 4 = ($$

8)
$$4x^2 - 4x + 1 = 0$$

9)
$$-x^2+6x-5=0$$

$$10) -6x^2 +5x-1=0$$

11)
$$(5x-4)(2x+3) = 5$$

Sistemas de ecuaciones lineales

Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales.

Ejemplo 16:
$$\begin{cases} 2x + 3y = 1 \\ 3x - y = 0 \end{cases}$$
 es un sistema de *2 ecuaciones* con *dos incógnitas*

Resolver un sistema es encontrar la **solución** (o soluciones) **común** a todas ellas, o concluir que el sistema no tiene solución.

Hay tres métodos para resolverlos:

✓ Sustitución

Ejemplo 17.
$$\begin{cases} 2x + 3y = 1 \\ 3x - y = 0 \end{cases}$$

En la 2ª ecuación despejamos la y y la sustituimos en 1ª ecuación

y=3x;
$$2x + 3(3x) = 1 \Rightarrow 11x = 1$$

 $\Rightarrow x = 1/11$

Una vez encontrado el valor de una de las incógnitas se sustituye (y =3x) para encontrar el valor de la otra incógnita: y = 3/11

Observación. Este método es muy adecuado cuando el coeficiente de, al menos, una de las incógnitas es 1.

✓ Igualación

Ejemplo 18.
$$\begin{cases} 2x + 3y = 1 \\ 3x - y = 0 \end{cases}$$

Despejamos la misma incógnita en las dos ecuaciones $y = \frac{1-2x}{3}$; y =3x.

Igualando
$$\frac{1-2x}{3} = 3x \Rightarrow 1-2x = 9x \Rightarrow 1 = 11x \Rightarrow x = 1/11$$

Ahora para obtener el valor de la y se procede como en el caso anterior, es decir se sustituye el valor hallado en la ecuación que más convenga (en este caso en y = 3x). y = 3/11

Observación. Este método es muy adecuado cuando el coeficiente de una de las incógnitas es igual en las dos ecuaciones.

✓ Reducción

Ejemplo 19.
$$\begin{cases} 2x + 3y = 1 \\ 3x - 2y = 0 \end{cases}$$

Multiplicamos la 1^a ecuación por 2 y la 2^a por 3. (De esta forma el coeficiente de y en las dos ecuaciones es el mismo, el m.c.m.

Resulta:
$$\begin{cases} 2x + 3y = 1 \\ 3x - 2y = 0 \end{cases} \Rightarrow \begin{cases} 4x + 6y = 2 \\ 9x - 6y = 0 \end{cases}$$

Sumando obtenemos 13 x = 2
$$\Rightarrow$$
 x = $\frac{2}{13}$

Sustituyendo el valor encontrado de x en la segunda ecuación:

$$3\frac{2}{13} - 2y = 0 \qquad y = 3/13$$

Observación. Este método es muy adecuado en todos los casos.

Nota. A veces es más cómodo usar la reducción dos veces para encontrar el valor de la otra incógnita. (Ver ejercicio resuelto)

Ejercicios

Resuelve los siguientes sistemas por el método que creas más adecuado:

$$1) \begin{cases} x + y = 1 \\ x - y = 2 \end{cases}$$

$$2) \begin{cases} 2x - y = 3 \\ 3x + 4y = 5 \end{cases}$$

3)
$$\begin{cases} 2x + 3y = -3 \\ 2x - 4y = 0 \end{cases}$$

$$4) \begin{cases} y = 3 \\ \frac{x}{2} + \frac{2y}{5} = -1 \end{cases}$$

$$5) \begin{cases} x + 2y = 5 \\ 2x + y = 7 \end{cases}$$

$$6) \begin{cases} \frac{x+3}{y} = 5 \\ x - y = 9 \end{cases}$$

8)
$$\begin{cases} 2x + 3y = 19 \\ 5x - 2y = 0 \end{cases}$$

Problemas de aplicación

- 1) Calcula dos número cuya suma sea 8 y su producto 12.
- 2) La suma de dos número es 65 y su diferencia 23. Halla los números
- 3) La diferencia de dos números es 1/6. El triple del mayor menos el doble del menor es 1. Halla dichos números.

Resolución de Problemas

1. Alejandra tiene 27 años más que su hija Carmen. Dentro de 8 años, la edad de Alejandra doblará a la de Carmen. ¿Cuántos años tiene cada una?

Solución. Sólo en este problema indicaremos con detalle las 4 fases

1°. Comprender el problema.

Es un problema con dos incógnitas y dos condiciones, luego suficientes para poder determinarlas.

Llamamos x a la edad de Alejandra e y a la de su hija.

Ordenamos los elementos del problema:

		dentro de 8 años
	Hoy	
La madre	X	x + 8
La hija	у	y + 8

2°. Concebir un plan.

Escribimos las ecuaciones que relacionan los datos con las incógnitas:

$$x = 27 + y$$

 $x + 8 = 2(y + 8)$

Es un sistema lineal de dos ecuaciones con dos incógnitas. Lo resolveremos por el método de sustitución.

3º Ejecutar el plan.

$$X = 27 + y$$

Entonces:

$$27 + y + 8 = 2(y + 8)$$
 de donde $35 - 16 = y \Rightarrow y = 19, x = 46$

4º Examinar la solución obtenida.

La solución obtenida es factible por ser entera.

El método empleado se puede usar en problemas "similares".

2. La edad de una madre es siete veces la de su hija. La diferencia entre sus edades es de 24 años. ¿qué edad tienen?.

Solución

Llamamos x a la edad de la hija, luego 7x será la edad de la madre.

$$7x - x = 24 \Rightarrow 6x = 24 \Rightarrow x = 4$$

Luego edad de la hija **4 años** y edad de la madre **28 años**

3. El hermano mayor de una familia con tres hermanos tiene 4 años más que el segundo y éste 3 más que el menor. Si entre todos tienen la edad del padre que tiene 40 años ¿qué edad tiene cada hermano?

4. Halla un número tal que su mitad más su cuarta parte más 1, sea igual al número pedido.
Solución Llamamos x al número que buscamos, la mitad del número es x/2 y su cuarta parte x/4
Entonces: $\frac{x}{2} + \frac{x}{4} + 1 = x$
Multiplicamos por el m.c.m. que es 4. Nos queda:
2x + x + 4 = 4x
x =4
5. El perímetro de un jardín rectangular es de 68 m. Si el lado mayor mide 10 m. más que el lado menor. ¿Cuánto miden los lados del jardín?
 6. Un gavilán se cruza en vuelo con lo que parece un centenar de palomas. Pero una de ellas lo saca de su error: No somos cien -le dice Si sumamos las que somos, más tantas como las que somos, más la mitad de las que somos, y la mitad de la mitad de las que somos, en es caso, contigo, gavilán seríamos cien. ¿Cuántas palomas había en la bandada?
7. Un ciclista sale por una carretera a 15km / h. Media hora después sale otro en su persecución a una velocidad de 20km/h. ¿Cuánto tardarán en alcanzarse
8. Halla un número tal que su mitad más su cuarta parte más 1, sea igual al número pedido.